
Localization threshold of instantaneous normal modes from level-spacing statistics

Stefano Ciliberti1 and Tomás S. Grigera2

1Departamento de Física Teórica I, Universidad Complutense de Madrid, Madrid 28040, Spain
2Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, CONICET-UNLP), Casilla de Correo 16, Sucursal 4,

1900 La Plata, Argentina
(Received 20 April 2004; published 2 December 2004)

We study the statistics of the level spacing of instantaneous normal modes in a supercooled liquid. A detailed
analysis allows us to determine the mobility edge separating extended and localized modes in the negative tail
of the density of states. We find that at a temperature below the mode coupling temperature only a very small
fraction of negative eigenmodes are localized.
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I. INTRODUCTION

The instantaneous normal modes(INM’s ) of a liquid are
the eigenvectors of the Hessian(second derivative) matrix of
the potential energy, evaluated at an instantaneous configu-
ration. The interest in the equilibrium-average properties of
the INM originates in the proposal[1] to use them to study
liquid dynamical properties, especially diffusion, which is
considered to be linked todiffusiveunstable modes(a subset
of the modes with negative eigenvalue) [2–8]. They have
been naturally applied to address the problem of the glass
transition: the glass phase is viewed as that where free(i.e.,
nonactivated) diffusion is absent, and the disappearance of
diffusion should be linked to that of the diffusive unstable
modes [3]. The identification of this subset of unstable
modes presents some problems[2,9,10], and the localization
properties of the INM’s are of interest. This is the problem
we address here.

Localization is an interesting and difficult problem in its
own right. Given anN3N random matrix defined by the
probability distribution of its elements in some(typically
site) base, the problem is to determine whether an eigenmode
projects to an extensive number of base vectors(extended
state) or not (localized state) in the large-N limit. Only in a
few cases is there a theoretical solution for this problem
[11–13]. From the point of view of random matrix theory, the
INM’s are the eigenvectors of a random matrix. Although
clearly the Hessian of a given instantaneous configuration is
a deterministic matrix, one is interested in properties of the
INM’s averaged over an ensemble of equilibrium configura-
tions. The elements of the Hessian are then deterministic
functions of random positions and thus can themselves be
regarded as random variables with a probability distribution
defined via the Boltzmann weight of the instantaneous con-
figurations. Needless to say, the probability distribution so
defined is very complicated, different elements being highly
correlated. Random matrices of this kind have been called
Euclidean random matrices(ERM’s) [14], and the problem
of the localization in ERM’s has been recently addressed
analytically in the dilute limit[15]. Clearly, the problem is
also hard from the numerical point of view, involving a ques-
tion about the thermodynamic limit. Quantities such as the
participation ratio[16], which can distinguish between local-
ized and extended states but require knowledge of the eigen-

vectors, are problematic numerically because computation of
eigenvectors is very expensive for large systems.

Here we explore an approach[17] relying only on eigen-
values (see Sec. II), based on the conjecture[18] that the
statistics of level spacings depends only on the localized or
extended nature of the eigenmodes(this conjecture has been
analyzed in the particular case of INM’s, and numerical evi-
dence supports it also on this problem[7]). We apply it for
the first time to a model glass-forming liquid at a tempera-
ture below the mode coupling temperatureTc [19]. Our work
can be regarded as an extension of the results of Ref.[7], as
far as we perform a quantitative analysis of the level spacing.
Our emphasis is on the exploring the usefulness of level-
spacing statistics as a means to obtain a localization thresh-
old in off-lattice systems and the possible limitations of this
technique.

II. THEORETICAL BACKGROUND

The spectral function of the eigenvalues of a random ma-
trix is Ssld=oidsl−lid /N. Its (disorder) average is the den-
sity of states(DOS) gsld. The cumulative spectral function
for a particular realization of the disorder,

hsld =E
−`

l

dl8Ssl8d =
1

N
o
i=1

N

usl − lid, s1d

can be decomposed into a smooth part plus a fluctuating term
hfluctsld, whose average is zero. The smooth part is then

zsld ; khsldl =E
−`

l

dl8gsl8d. s2d

The level spacing is not studied directly on theli, because
it depends on the mean level density. To eliminate this de-
pendence, one “unfolds” the spectrum, which means to map
the original sequencehlij onto a new onehzislidj according
to Eq. (2) (see, e.g.,[18] for a detailed explanation of this
point). The cumulative spectral function can be expressed in
terms of these new variables:

ĥszd ; h„lszd… = z + ĥfluctszd. s3d

The distribution of the variablez is uniform in the interval
[0, 1] regardless thegsld.
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The nearest-neighbor spacing distributionPssd gives the
probability that twoneighboringunfolded eigenvalueszi and
zi+1 are separated bys. It is one of the most commonly used
observables in random matrix theory. It is different from the
two-level correlation function and it involves allk-level cor-
relation functions withkù2 [20]. It displays a high degree of
universality, exhibiting common properties in systems with
very different spectra. Although no general proof has been
given, its shape is thought to depend only on the localization
properties of the states[18]. In the case of the Gaussian
orthogonal ensemble(GOE), where all states are extended in
the thermodynamic limit, it is known[20] that Pssd, normal-
ized such thatksl=1, follows the so-calledWigner surmise
(also known as Wigner-Dyson statistics)—namely,

PWDssd =
ps

2
exps− ps2/4d. s4d

The linear behavior for smalls is an expression of the level
repulsion. This form actually characterizes many different
systems with extended eigenstates(see, e.g., Ref.[21] and
references therein). In the case of INM’s, it has been shown
[7] that it describes the level spacing better and better as the
fraction of localized states decreases.

On the other hand, a system whose states are all localized
will have completely uncorrelated eigenvalues. This corre-
sponds to a Poisson process, and the statistics of two adja-
cent levels is given by

PPssd = exps− sd. s5d

If one deals with a set of levels which includes both localized
and extended states, one expects some distribution interpo-
lating between those two. A natural ansatz is the simple lin-
ear combination

PLCss;pd = s1 − pdPPssd + pPWDssd, s6d

which holds under the hypothesis that contributions coming
from localized and extended modes simply add linearly. An-
other possibility comes from a statistical argument due to
Wigner (see, for example,[20]), which leads to the heuristic
function

Pssd = mssdexpH−E
0

s

ds8mss8dJ , s7d

where mssd is called level repulsion function. Taking mssd
=cqs

q, with qP f0,1g, one obtains the Brody distribution
[22]

PBss;qd = cqs
qexpS−

cqs
q+1

q + 1
D, cq =

Gq+1f1/sq + 1dg
q + 1

, s8d

which interpolates between the Poissonsq=0d and Wigner-
Dysonsq=1d distributions. However, this is just another phe-
nomenological interpolation scheme, since there is no theo-
retical argument supporting a level repulsion function
increasing as a power law with an exponent smaller than 1.

III. METHOD

The practical difficulty in performing the unfolding lies in
finding a good approximation to the smooth(averaged) part
of the cumulative spectral functionzsld. We have first ob-
tained a cumulative function averaged over many samples of
the Hessian(computed from a corresponding number of
equilibrium configurations) and then takenzsld as the func-
tion defined by a cubic spline interpolation of the resulting
staircase. Once this function is defined, the spacings of each
sample can be evaluated by extracting thel values according
to the gsld and then computings=zsli+1d−zslid; the histo-
gram of these values is an estimate of thePssd. We have also
tried digital filtering (Savistky-Golay[24]) of the staircase,
but the results were not satisfactory. The procedure is illus-
trated in Fig. 1.

To estimate the localization thresholdlL, we proceed as
follows. We divide the full spectrum into two parts at an
arbitrary thresholdlth and study(after proper unfolding) the
restricted level-spacing distributionsP1ssd; Pssul,lthd and
P2ssd; Pssul.lthd. The localization threshold(where it ex-
ists) should correspond to the value oflth that leads to
P1ssd=PWDssd (extended eigenstates) and P2ssd=PPssd (lo-
calized eigenstates). On the other hand, iflthÞlL, P1ssd and
P2ssd will bear more similarity to each other, since one of
them will include spacings from both localized and extended
levels. A qualitative feeling of what happens aslth moves
through the spectrum can be gathered from Fig. 2, where it
can be clearly seen howP2ssd evolves from a nearly Wigner
to a Poisson distribution. We remark that these probabilities
distributions are universal since no fitting parameters are re-
quired once the plot is versuss/ ksl, whereksl=ePssdsds.

Since one cannot say, based on a finite sample, when one
of the distributions becomes “exactly” Poisson or Wigner,
one looks for the value oflth that makes both distributions
“as different as possible from each other.” To do this we use
(following Ref. [17]) the Jensen-Shannon(JS) divergence as

FIG. 1. Evaluation of the level-spacing statistics. Top: INM
spectrum of unit density soft-sphere(pair potential 1 /r12) system at
T=0.68, as obtained from the numerical diagonalization of 100
thermalized configurations. Middle: the cumulative function of the
same system and decomposition insmoothand fluctuating parts
(inset). Bottom: the level-spacing distribution of this system, nor-
malized to haveksl=1. Poisson and Wigner-Dyson distributions are
also shown for comparison.
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a measure of the distance between two distributions. It is
defined as

DJSfP1,P2g = Hfa1P1 + a2P2g − a1HfP1g − a2HfP2g. s9d

HfPg=−oiPssidln Pssid is the Shannon entropy of the distri-
bution P, anda1,a2=1−a1 are positive weights of each dis-
tribution. In what follows, we shall choose the weights as
proportional to the support of the section of the(unfolded)
spectrum considered to evaluate the level spacing. This en-
sures that the JS divergence is not affected by differences in
sizes[23]. The problem of finding the threshold is then re-
duced to finding the maximum ofDJSfP1,P2g as function of
lth. We stress that the ideas behind the method are justified
only in the largeN limit, and a study of finite-size effects is
thus crucial in this context.

IV. RESULTS

A. Case study: The GOE

We have applied this procedure to the GOE, as a test and
illustration of the method. We generated ensembles ofN
3N random matrices forN=10 20, 50, 500 with i.i.d. ele-
ments(taken from Gaussian distribution with zero mean and
variance 1/ÎN) and computed the DOS by numerical diago-
nalization (Fig. 3). The JS divergence has a maximum that
tends to the band edge asN grows (Fig. 4, top), indicating
that there is no localization threshold in this system, as it is
known theoretically.

To gain further insight into the workings of the method,
we have also tried fitting the level-spacing distribution re-
stricted to eigenvalues lower thanlth with the functions in-

terpolating between Poisson and Wigner-Dyson, thus defin-
ing a kind of order parameter for localization[p in the case
of the linear combination, Eq.(6), q in the case of the Brody
distribution, Eq.(8)]. Both p and q should be zero iflth
ølL and nonzero otherwise. As Fig. 4 shows, both order
parameters start from being different from their minimum at
a value which roughly corresponds to the maximum of the JS
divergence. However, the minimum value is not zero, most
likely due to finite-size problems. Unfortunately, it is not
possible to verify that in this case, because increasingN de-
creases the fraction of localized states such that their number
remains finite even whenN→` [20].

FIG. 2. Level spacing distributionsP1ss/ ksld
and P2ss/ ksld obtained from the positive part of
the spectrum of Fig. 1 for several values oflth.
Wigner-Dyson(left) and Poisson(right) distribu-
tions are also plotted.

FIG. 3. DOS of GOE matrices at severalN. The solid line is the
semicircular law predicted atN→`. Inset: close-up of the left tail.
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B. INM spectrum

We have studied the soft-sphere binary mixture of Ref.
[25] at unit density andT=0.2029(to be compared with the
mode-coupling critical temperatureTc<0.2262). Equilibra-
tion of the supercooled liquid at this temperature has been
possible thanks to the fast Monte Carlo algorithm of Ref.
[26]. From the physical point of view, we are interested in
studying the nature of negative modes(which represent
about 4.3% of the total modes for this system). At the tem-
perature considered, the dynamics is highly arrested, and dif-
fusion events are rare(indeed, at the mean-field level, such

as mode-coupling theory, diffusion is completely suppressed
belowTc). Accordingly, one might expect that all or most of
the negative modes correspond to localized eigenvectors
(i.e., local rearrangement of a nonextensive number of par-
ticles). We find that this is not the case.

In Fig. 5 we show the INM spectrum for a system of 2048
soft spheres. The spectrum is expected to have two localiza-
tion thresholds(on the positive and negative tails), so to
apply the scheme above we need first to separate the positive
and negative modes. We focus on the negative modes. The JS
divergence for the negative part, evaluated as explained
above, is shown in Fig. 6 forN=400, 800, and 2048 par-
ticles. AsN increases, the maximum of these curves does not
shift as in the GOE example but it becomes sharper, pointing
to a localization threshold. A quadratic fit of the peak, for the
largest size system leads tolL =−16.8±1.4. We also verify
that the two distributionsP1ssd andP2ssd are indeed Poisson
and Wigner(respectively) for this threshold value.

We next try to fit with the linear interpolation: in Fig. 7
we plot the fitting parameterp [cf. Eq. (6)] for the
Pssul,lthd. As in the GOE case, the parameter goes to a
nonzero value. At the values ofN available to us, there is no
clear evidence that larger system sizes will makep go to
zero forlthølL. To check whether this behavior is an indi-

FIG. 4. Top: JS divergence for GOE matrices at differentN.
Middle: the Brody parameter(see text) for the same values ofN.
Bottom: the order parameterp from the linear approximation(6).

FIG. 5. INM spectrum of the binary mixture of soft spheres at
T=0.2029 as obtained from 300 equilibrium configurationssN
=2048d.

FIG. 6. The Jensen-Shannon divergence for the negative tail of
the spectrum of Fig. 5. The DOSgsld is also plotted[here it is
normalized such thate−`

0 gsld=1].
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cation of some nonlinear effect, we have performed the fol-
lowing test. Assuming that the threshold is actually atlL, for
each of the values oflth of Fig. 7 we have generated random
spacings distributed with the linear combination of Poisson
and Wigner-Dyson. The weightp was taken as proportional
to the number of actual levels betweenlL andlth—i.e.,

p ~ E
lL

lth

gslddl.

We then tried the same fitting procedure we applied to the
INM spectrum, to see whether it would yield the samep
used. We found that samples of at least<90 000 levels were
needed in order to recover the correct weight with the fit(this
is more than 10 times greater than the number of levels avail-
able from the INM spectrum of the simulated liquid). Hence
we attribute the finite value ofp (Fig. 7) to finite-size effects.

In the fit with the Brody distribution, the finite-size effects
seem to be less pronounced(see Fig. 8). The Brody param-
eter is consistent with a localized phase forl&−16: here one
can see that in the large-N limit the order parameter goes to
zero aslølL. So the results from the fits and from the JS
divergence are consistent with the existence of a localization
threshold.

Though a more accurate determination of the threshold
needs larger system sizes, this result shows that most(more
than 96%) of the negative modes in this system are of an
extended nature.

Finally, it is interesting to compare these results with the
information that can be obtained from the knowledge of the
eigenvectorshei

aj (herea labels the mode whilei is the par-
ticle index). We have numerically obtained the eigenvectors
of the Hessian for systems ofN=400 andN=800, and com-
puted the inverse participation ratio, defined asYa

=fNoisei ·eid2g−1. This number should beOs1d for extended
modes andOs1/Nd for localized modes. The result(Fig. 9)
clearly shows that this method requires system sizes much
larger than those we have employed. It is not possible to
extract a threshold from this plot, particularly in the negative
tail. On the other hand, at a qualitative level, the inverse
participation ratio plot is in very good agreement with the
positive threshold we have found by means of the level-
spacing technique,lL

+ .490.

V. CONCLUSIONS

The study of the level-spacing distribution of the INM
spectrum of a glass-forming liquid in the supercooled regime
we have presented shows that it is possible to locate the
mobility edge for the negative tail of this spectrum with rea-
sonable precision(other techniques like the inverse partici-
pation ratio are usually less precise). The INM level-spacing
distribution is reasonably described in terms of Wigner and
Poisson distributions and this information can be used to
determine the mobility edge.

We have applied the technique to the soft-spheres binary
liquid belowTc. Our result can be summarized by stating that
at this temperature only 3.4% of the negative modes are lo-
calized. This adds to the evidence[2,9] that not all extended
imaginary modes can be regarded as leading to free diffu-
sion. It is tempting to think of activated diffussion as a mo-
tion involving local rearrangements of particles and thus as-
sociated only with localized imaginary INM’s. However, the

FIG. 7. The parameterp is found by fitting the level-spacing
distributionPssul,lthd to the form in Eq.(6).

FIG. 8. The Brody order parameter for the supercooled liquid at
different sizes.

FIG. 9. The inverse participation ratio for theG=1.49 super-
cooled liquid: The close-up of the negative tail clearly shows that
much more statistics(and larger sizes) are needed in order to give a
quantitative estimate of the localization threshold.
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real picture is clearly much more complicated. It has been
argued before[3,5,6,8] that not all negative modes can be
considered diffusive[one should exclude false saddles(also
called shoulder modes) and saddles that do not connect dif-
ferent minima, an analysis we have not done here]. Our re-
sult implies not only that many negative modes cannot be
regarded as contributing to free diffussion(not surprising in
view of earlier results, e.g., Refs.[5,9]), but also that the vast
majority of these non-free-diffusive negative modes are ex-
tended, even belowTc.

The first attempt to account for nondiffusive negative
modes in a liquid is found in Ref.[2]. In a study of Lennard-
Jones argon, the authors observed that both liquid and crystal
have a non-negligible fraction of negative modes. They
pointed out that this is probably an indication of anharmo-
nicities in the crystal, which would also show up in the su-
percooled liquid, and so suggested that only the excess nega-
tive modes present in the liquid, with respect to the crystal,
should be taken into account in an INM theory. In our sys-
tem, the crystal is not available(because of the glass transi-
tion intervenes), so we have considered the crystal of the
single-component soft sphere system. AtT=0.2603 the frac-

tion of negative eigenvalues of the crystal is about 1.1%(so
diagonalization of 100 configurations yields reasonable re-
sults). We find that about 8% of the negative modes are lo-
calized. Similarly, atT=0.4822 (just below the melting
point), the fraction of negative modes is 7%, and 7% of these
are localized. So the suggestion of Ref.[2] may hold in this
case, but we cannot verify it strictly. Again, these crystals
show many extended negative modes completely unrelated
to free diffusion.

It would be interesting to extend these results to study the
temperature dependence of the localization properties of the
INM across the mode-coupling temperature. We expect to do
this in the near future.
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