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Localization threshold of instantaneous normal modes from level-spacing statistics
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We study the statistics of the level spacing of instantaneous normal modes in a supercooled liquid. A detailed
analysis allows us to determine the mobility edge separating extended and localized modes in the negative tail
of the density of states. We find that at a temperature below the mode coupling temperature only a very small
fraction of negative eigenmodes are localized.
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[. INTRODUCTION vectors, are problematic numerically because computation of
The instantaneous normal mod@sM’s) of a liquid are ~ €1genvectors is very expensive for large systems.
the eigenvectors of the Hessigecond derivativematrix of Here we explore an approa¢h7] relying only on eigen-

the potential energy, evaluated at an instantaneous configijalues(see Sec. )i based on the conjectufd8] that the
ration. The interest in the equilibrium-average properties oftatistics of level spacings depends only on the localized or
the INM originates in the proposé#l] to use them to study extended nature of the eigenmod#ss conjecture has been
liquid dynamical properties, especially diffusion, which is analyzed in the particular case of INM’s, and numerical evi-
considered to be linked tdiffusiveunstable modeg subset dence supports it also on this problgi#). We apply it for
of the modes with negative eigenvaluR—8|. They have the first time to a model glass-forming liquid at a tempera-
been naturally applied to address the problem of the glaskire below the mode coupling temperatiigg[19]. Our work
transition: the glass phase is viewed as that where(freg  can be regarded as an extension of the results of[Rgfas
nonactivateyl diffusion is absent, and the disappearance offar as we perform a quantitative analysis of the level spacing.
diffusion should be linked to that of the diffusive unstable Our emphasis is on the exploring the usefulness of level-
modes [3]. The identification of this subset of unstable spacing statistics as a means to obtain a localization thresh-
modes presents some proble[@s9,10, and the localization old in off-lattice systems and the possible limitations of this
properties of the INM’s are of interest. This is the problemtechnique.
we address here.

Localization is an interesting and difficult problem in its
own right. Given anN XN random matrix defined by the  The spectral function of the eigenvalues of a random ma-
probability distribution of its elements in somgypically  trix is S(\)==;8\-\;)/N. Its (disordey average is the den-
site) base, the problem is to determine whether an eigenmodgity of statesDOS) g(\). The cumulative spectral function
projects to an extensive number of base vectessended for a particular realization of the disorder,
statg or not (localized statgin the largeN limit. Only in a
few cases is there a theoretical solution for this problem A 10
[11-13. From the point of view of random matrix theory, the 7(\) :f d\'S(N') = NE ON = Ni), (1)
INM’s are the eigenvectors of a random matrix. Although - =
clearly the Hessian of a given instantaneous configuration isan be decomposed into a smooth part plus a fluctuating term
a deterministic matrix, one is interested in properties of they, (\), whose average is zero. The smooth part is then
INM’s averaged over an ensemble of equilibrium configura- \
tions. The elements of the Hessian are then deterministic _ - Y
functions of random positions and thus can themselves be ) = <”()\)>_J_w dA'gN). @
regarded as random variables with a probability distribution o _ _
defined via the Boltzmann weight of the instantaneous con- The level spacing is not studied directly on thebecause
figurations. Needless to say, the probability distribution sdt depends on the mean level density. To eliminate this de-
defined is very complicated, different elements being highlyPendence, one “unfolds” the spectrum, which means to map
correlated. Random matrices of this kind have been calleghe original sequencg\;} onto a new ond{j(\;)} according
Euclidean random matriceERM’s) [14], and the problem t0 Eg.(2) (see, e.9.[18] for a detailed explanation of this
of the localization in ERM's has been recently addressedP0int). The cumulative spectral function can be expressed in
analytically in the dilute limit[15]. Clearly, the problem is terms of these new variables:
also hard from the numerical point of view, involving a ques- A .
tion about the thermodynamic limit. Quantities such as the (&) = n(\(Q) = £+ Bucdd) - (3
participation ratig 16], which can distinguish between local- The distribution of the variablé is uniform in the interval
ized and extended states but require knowledge of the eigeif@, 1] regardless thg(\).

Il. THEORETICAL BACKGROUND
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The nearest-neighbor spacing distributiBs) gives the 10 ¢
probability that twoneighboringunfolded eigenvalueg and
i1 are separated by It is one of the most commonly used 08 | *
observables in random matrix theory. It is different from the
two-level correlation function and it involves dtlevel cor- = 06
relation functions wittk=2 [20]. It displays a high degree of =
universality, exhibiting common properties in systems with & 0.4 | ;
very different spectra. Although no general proof has been ;
given, its shape is thought to depend only on the localization ¢ |f

Wigner-Dyson -

properties of the stategl8]. In the case of the Gaussian ¥ .. Poisson e
orthogonal ensemblgOE), where all states are extended in g b . "o
the thermodynamic limit, it is knowf20] that P(s), normal- 0 1 2 3 4 5

ized such thatsy=1, follows the so-called\igner surmise s/(s)

(also known as Wigner-Dyson statisiesnamely, FIG. 1. Evaluation of the level-spacing statistics. Top: INM

spectrum of unit density soft-sphefeair potential 1/12) system at
PWD(S):lsexr(— 7752/4)_ (4) T:0.68Z as obtqined from thle numerical diaggnalizatign of 100
2 thermalized configurations. Middle: the cumulative function of the
same system and decomposition smoothand fluctuating parts
The linear behavior for smadl is an expression of the level (insey. Bottom: the level-spacing distribution of this system, nor-
repulsion. This form actually characterizes many differentmalized to havés)=1. Poisson and Wigner-Dyson distributions are
systems with extended eigenstatese, e.g., Ref[21] and  also shown for comparison.
references therejnin the case of INM's, it has been shown
[7] that it describes the level spacing better and better as the ll. METHOD
fraction of localized states decreases. . The practical difficulty in performing the unfolding lies in
_ On the other hand, a system Whos_e states are aII_ Iocallzefﬂ]ding a good approximation to the smodtveragesi part
will have completely uncorrelated eigenvalues. This corre-

sponds to a Poisson process, and the statistics of two ad'OI the cumulative spectral functiof(). We have first ob-
P o P ' J%ined a cumulative function averaged over many samples of
cent levels is given by

the Hessian(computed from a corresponding number of
Pa(s) = expi- 5) (5) equilibrium configurationsand then takerd(\) as the func-
P ' tion defined by a cubic spline interpolation of the resulting
If one deals with a set of levels which includes both localizedStaircase. Once this function is defined, the spacings of each
and extended states, one expects some distribution interp§2MPple can be evaluated by extracting thealues according
lating between those two. A natural ansatz is the simple lin{0 theg(\) and then computing={(Ai.1) —{(N)); the histo-

ear combination gram of these values is an estimate of B{g). We have also
tried digital filtering (Savistky-Golay[24]) of the staircase,
P c(s;m) = (1 — m)Pp(S) + mPyp(9), (6) but the results were not satisfactory. The procedure is illus-

trated in Fig. 1.
which holds under the hypothesis that contributions coming To estimate the localization threshalg, we proceed as
from localized and extended modes simply add linearly. Anfollows. We divide the full spectrum into two parts at an
other possibility comes from a statistical argument due tarbitrary threshold\, and study(after proper unfoldingthe
Wigner (see, for examplg20]), which leads to the heuristic restricted level-spacing distributiofs(s) = P(s|\ <\y,) and
function P,(s)=P(s|\ > \y,). The localization threshol@vhere it ex-
. ists) should correspond to the value af;, that leads to
_ , P.(s)=Pyp(s) (extended eigenstateand P,(s)=Pp(s) (lo-
P(S) = ,u(s)exp{— fo ds (s )}’ @) calized eigenstatg@sOn the other hand, i;,# \, P4(s) and
) ) . ) P(s) will bear more similarity to each other, since one of
where u(s) is calledlevel repulsion functionTaking u(S)  them will include spacings from both localized and extended
=Cgs, with g [0,1], one obtains the Brody distribution |evels. A qualitative feeling of what happens &g moves
[22] through the spectrum can be gathered from Fig. 2, where it
g P 1+ 1] can be glearly seen hpwz(s) evolves from a nearly Wign'e.r.
Py(s:q) = cqsqexp<— Cq ) Cq= q . (®) to a Poisson distribution. We remark that these probabilities

+1 g+1 distributions are universal since no fitting parameters are re-
o _ _ quired once the plot is versiss(s), where(s)=[P(s)sds
which interpolates between the Poissar0) and Wigner- Since one cannot say, based on a finite sample, when one

Dyson(g=1) distributions. However, this is just another phe- of the distributions becomes “exactly” Poisson or Wigner,
nomenological interpolation scheme, since there is no theane looks for the value ofy, that makes both distributions
retical argument supporting a level repulsion function“as different as possible from each other.” To do this we use
increasing as a power law with an exponent smaller than 1(following Ref.[17]) the Jensen-ShanngdS divergence as
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a measure of the distance between two distributions. It iserpolating between Poisson and Wigner-Dyson, thus defin-
defined as ing a kind of order parameter for localizatipsr in the case
of the linear combination, E@6), q in the case of the Brody

Dd Py, P2l = HlayPy + oPo] — ayH[P1] - @:H[P2l. (9)  istribution, Eq.(8)]. Both = and g should be zero if\,
H[P]=-3,P(s)In P(s) is the Shannon entropy of the distri- <AL and nonzero otherwise._As Fig. 4 ShOWS, k_)o_th order
bution P, anda,,a,=1-a, are positive weights of each dis- Parameters start from being different from their minimum at
tribution. In what follows, we shall choose the weights as@ value which roughly corresponds to the maximum of the JS
proportional to the support of the section of thenfoldeg ~ divergence. However, the minimum value is not zero, most
spectrum considered to evaluate the level spacing. This ehkely due to finite-size problems. Unfortunately, it is not
sures that the JS divergence is not affected by differences ipossible to verify that in this case, because increabirip-
sizes[23]. The problem of finding the threshold is then re- creases thg fraction of localized states such that their number
duced to finding the maximum @,dP;,P,] as function of ~ remains finite even wheN— o [20].
A\ir- We stress that the ideas behind the method are justified
only in the largeN limit, and a study of finite-size effects is 04
thus crucial in this context.

IV. RESULTS 03}
A. Case study: The GOE
We have applied this procedure to the GOE, as a testancc ,, |

illustration of the method. We generated ensembledNof =
X N random matrices foN=10 20, 50, 500 with i.i.d. ele-
ments(taken from Gaussian distribution with zero mean and
variance 14N) and computed the DOS by numerical diago-
nalization(Fig. 3). The JS divergence has a maximum that
tends to the band edge &kgrows (Fig. 4, top, indicating

that there is no localization threshold in this system, as itis 0.0

-1.8

: 20 <15 -0 05 00 05 10 15 20
known theoretically. 3

To gain further insight into the workings of the method,
we have also tried fitting the level-spacing distribution re- FIG. 3. DOS of GOE matrices at seveNl The solid line is the
stricted to eigenvalues lower thag, with the functions in-  semicircular law predicted & — . Inset: close-up of the left tail.
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08 |
X i as mode-coupling theory, diffusion is completely suppressed
o6 | % below T,). Accordingly, one might expect that all or most of
: the negative modes correspond to localized eigenvectors
= ¥ (i.e., local rearrangement of a nonextensive number of par-
04 1 A I ticles). We find that this is not the case.
13 { N=10 —— In Fig. 5 we show the INM spectrum for a system of 2048
02| i % % % % % { N=20 -~ soft spheres. The spectrum is expected to have two localiza-
: % 1 N=50 ¥ tion thresholds(on the positive and negative tgilsso to
00 : \ ‘ ‘ N =500 - apply the scheme above we need first to separate the positive
o4 2.0 1.6 12 08 04 and negative modes. We focus on the negative modes. The JS
At divergence for the negative part, evaluated as explained
10 _‘ . ‘ above, is shown in Fig. 6 foN=400, 800, and 2048 par-
RN ticles. AsN increases, the maximum of these curves does not
* I shift as in the GOE example but it becomes sharper, pointing
i 1 to a localization threshold. A quadratic fit of the peak, for the
08 . : largest size system leads x9=-16.8+1.4. We also verify
: that the two distribution®,(s) andP,(s) are indeed Poisson
& X and Wigner(respectively for this threshold value.
06 . lz We next try to fit with the linear interpolation: in Fig. 7
{ ,: & { Ne 10 e we plot the fit_ting parameterr [cf. Eqg. (6)] for the
i % ] i} % ¥ { } { N 20 P(s|A<\y). As in the GOE case, the parameter goes to a
04t - % N=50 voxs nonzero value. At the values df available to us, there is no
i ’ N=500 -5 clear evidence that larger system sizes will makeyo to
’y 2 _]"6 _]'.2 ()"8 04 zero forAp=<\_. To check whether this behavior is an indi-
At 0.08
FIG. 4. Top: JS divergence for GOE matrices at differbint
Middle: the Brody parametegisee text for the same values dfl. 0061 o+
Bottom: the order parameter from the linear approximatio(6). + -
E x X X x +
B. INM spectrum & 0041 ., % )
= : XXt N=2048 +
We have studied the soft-sphere binary mixture of Ref. = * oAt N = 800 x
[25] at unit density and’=0.2029(to be compared with the 0.02 b S X N =400 *
mode-coupling critical temperatufg,~0.2263. Equilibra- * ; .
tion of the supercooled liquid at this temperature has been e Xy
possible thanks to the fast Monte Carlo algorithm of Ref. 0.00 — ' '
[26]. From the physical point of view, we are interested in -20 -16 12 o 8 0

studying the nature of negative modéshich represent

about 4.3% of the total modes for this sysjedt the tem- FIG. 6. The Jensen-Shannon divergence for the negative tail of
perature considered, the dynamics is highly arrested, and dithe spectrum of Fig. 5. The DO§\) is also plotted[here it is
fusion events are rargndeed, at the mean-field level, such normalized such thaf® g(\)=1].
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FIG. 7. The parameterr is found by fitting the level-spacing

distribution P(s|\ <\y,) to the form in Eq.(6).

lowing test. Assuming that the threshold is actuallyxgtfor

FIG. 9. The inverse participation ratio for tHe=1.49 super-
cooled liquid: The close-up of the negative tail clearly shows that

cation of some nonlinear effect, we have performed the f0|_much more statisticend larger sizesare needed in order to give a

each of the values ofy, of Fig. 7 we have generated random
spacings distributed with the linear combination of Poisson Though a more accurate determination of the threshold
and Wigner-Dyson. The weight was taken as proportional needs larger system sizes, this result shows that muste

than 96% of the negative modes in this system are of an

to the number of actual levels betwekn and \y—i.€.,

Ath
WOCJ g(\)d\.

AL

used. We found that samples of at lea€10 000 levels were
needed in order to recover the correct weight with thétiis

extended nature.

guantitative estimate of the localization threshold.

Finally, it is interesting to compare these results with the
information that can be obtained from the knowledge of the
eigenvectorge'} (herea labels the mode whileis the par-
ticle index. We have numerically obtained the eigenvectors
We then tried the same fitting procedure we applied to thef the Hessian for systems df=400 andN=800, and com-
INM spectrum, to see whether it would yield the same puted the inverse participation ratio, defined &,

=[N=i(e -€)?]™L. This number should b®(1) for extended
modes andD(1/N) for localized modes. The resulEig. 9)

is more than 10 times gl’eater than the number of levels aVaib|ear|y shows that this method requires System sizes much

able from the INM spectrum of the simulated liquitHence

we attribute the finite value af (Fig. 7) to finite-size effects.

larger than those we have employed. It is not possible to
extract a threshold from this plot, particularly in the negative

In the fit with the Brody diStribUtion, the finite-size effects tail. On the other hand, at a qua”tative |eve|, the inverse

seem to be less pronouncéske Fig. 8 The Brody param-
eter is consistent with a localized phaseXog —16: here one

participation ratio plot is in very good agreement with the
positive threshold we have found by means of the level-

can see that in the largedimit the order parameter goes to gpacing techniquey; = 490.

zero ash<\,. So the results from the fits and from the JS

divergence are consistent with the existence of a localization

threshold.
1.0 .
N=2048 + .
x
0s | N = 800 x x XL *
' N =400 x «
0.6
o x 7
04 . JS dist
02t I I
;ﬁ §§ ?E K é ?i-( ¥
+ &+t *
00 | ) | —
-20 -16 12 -8 4

)\th

V. CONCLUSIONS

The study of the level-spacing distribution of the INM
spectrum of a glass-forming liquid in the supercooled regime
we have presented shows that it is possible to locate the
mobility edge for the negative tail of this spectrum with rea-
sonable precisioigother techniques like the inverse partici-
pation ratio are usually less precis&he INM level-spacing
distribution is reasonably described in terms of Wigner and
Poisson distributions and this information can be used to
determine the mobility edge.

We have applied the technique to the soft-spheres binary
liquid belowT.. Our result can be summarized by stating that
at this temperature only 3.4% of the negative modes are lo-
calized. This adds to the evidenf&9] that not all extended
imaginary modes can be regarded as leading to free diffu-
sion. It is tempting to think of activated diffussion as a mo-

FIG. 8. The Brody order parameter for the supercooled liquid ation involving local rearrangements of particles and thus as-

different sizes.

sociated only with localized imaginary INM’s. However, the
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real picture is clearly much more complicated. It has beertion of negative eigenvalues of the crystal is about 1($%
argued beford3,5,6,9 that not all negative modes can be diagonalization of 100 configurations yields reasonable re-
considered diffusivgdone should exclude false saddlgdso  sulty. We find that about 8% of the negative modes are lo-
called shoulder modgsind saddles that do not connect dif- calized. Similarly, atT=0.4822 (just below the melting
ferent minima, an analysis we have not done he@air re-  point), the fraction of negative modes is 7%, and 7% of these
sult implies not only that many negative modes cannot bere localized. So the suggestion of Regfl may hold in this
regarded as contributing to free diffussigmt surprising in  case, but we cannot verify it strictly. Again, these crystals
view of earlier results, e.g., Refig,9]), but also that the vast show many extended negative modes completely unrelated
majority of these non-free-diffusive negative modes are exto free diffusion.
tended, even below.. It would be interesting to extend these results to study the
The first attempt to account for nondiffusive negativetemperature dependence of the localization properties of the
modes in a liquid is found in Ref2]. In a study of Lennard- INM across the mode-coupling temperature. We expect to do
Jones argon, the authors observed that both liquid and crysttdis in the near future.
have a non-negligible fraction of negative modes. They
pointed out that this is probably an indication of anharmo-
nicities in the crystal, which would also show up in the su-
percooled liquid, and so suggested that only the excess nega- We thank G. Biroli, O. Bohigas, N. Deo, S. Franz, V.
tive modes present in the liquid, with respect to the crystalMartin-Mayor, G. Parisi, and P. Verrocchio for useful discus-
should be taken into account in an INM theory. In our sys-sions. S.C. was supported by the ECHP programme under
tem, the crystal is not availabl&ecause of the glass transi- Contract No. HPRN-CT-2002-00307, DYGLAGEMEM.
tion interveney so we have considered the crystal of theT.S.G. is a career scientist of the Consejo Nacional de Inves-
single-component soft sphere systemTAt0.2603 the frac- tigaciones Cientificas y TécnicéSONICET, Argentina
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